

MBS-01-2016 Seat No. _____

M. Phil. (Sem. II) (CBCS) Examination

April / May - 2018

Mathematics

(Topology - CMT - 20001) (New Course)

Faculty Code: 01 Subject Code: 2016

Time	e : 1	$\frac{1}{2}$ Hours] [Total Marks : 70)
Inst	ruct	 ions: (1) There are five questions in this paper. (2) Each question carries 14 marks. (3) All questions are compulsory. 	
1	Fill	in the blanks : (Each question carries two marks) 14	
	(a)	If $f: xX \to \mathbb{R}$ is a continuous function then $f^1(\{\})$	
		is a set.	
	(b)	If I is a Z-ideal which contains a prime ideal then I	
		is a ideal.	
	(c)	Every maximal ideal in $\operatorname{\mathit{C}}^*(\mathbb{N})$ contains the	
		function $j(n)$.	
	(d)	In a normal space X every subset is	
		C-embedded in X.	
	(e)	In $C(\mathbb{N})$ every ideal is a ideal.	
	(f)	If A and B are completely separated in X then A and	
		B are contained in disjoint sets.	
	(g)	The space of natural numnbers is embedded	
		in its Stone – Cech compactification.	
2	Atte	empt any two of the following:	
	(a)	Prove that an ideal M is a maximal ideal if and only	
		if $Z(M)$ is a Z–ultra filter.	
MBS	-01-2	[Contd	

	(c)	(i) Give an example of an ideal in $C(X)$ which is a Z-ideal.	
		(ii) Prove for any ideal I, $Z^{-1}(Z(1))$ is a Z-ideal.	
3	All	are compulsory:	14
	(a)	Let $I = \{ f \in C(\mathbb{R}) : Z(f) \text{ is a neibhbourhood of } 0 \}$	6
		Show that I is a Z-ideal and it is not the intersection	
		of maximal ideals containing it.	
	(b)	Give an example of an ideal in $\operatorname{\mathit{C}}^*(\mathbb{N})$ which is not	4
		the intersection of any ideal of $C(\mathbb{N})$ with $C^*(\mathbb{N})$.	
	(c)	Suppose I is a Z-ideal which contains a prime ideal.	4
		Prove that I is a prime ideal in $C(X)$.	
		OR	
3	All	are compulsory:	14
	(a)	Lex X be a compact Hausdorff space.	6
		(i) Prove that the closure of an ideal I in $C(X)$ is an ideal in $C(X)$.	
		(ii) Prove that every maximal ideal in $C(X)$ is closed. $[C(X)]$ =the Banach algebra of all complex valued continuous function on X].	
	(b)	Give an example of a subset of $\mathbb R$ which is not C–embedded in $\mathbb R$	4
	(c)	Prove that every prime ideal of $C(X)$ is contained in a unique maximal ideal of $C(X)$.	4
4	Atte	empt any two of the following:	14
	(a)	Prove that a space X is compact if and only if every	
		maximal ideal in $C^*(X)$ is fixed.	

(b) State and prove the necessary and sufficient condition

under which a subspace S of X is C^* -embedded in X.

- (b) Suppose X is a denes subspace of T and X is C^* embedded in T. Prove that
 - (i) If Z_1 and Z_2 are disjoint zero sets in X then $Cl_T(Z_1)$ and $Cl_T(Z_2)$ are disjoint.
 - (ii) If Z_1 and Z_2 are zero sets in X then $Cl_T(Z_1 \cap Z_2) = Cl_T(Z_1) \cap Cl_T(Z_2)$.
- (c) Let C(X) be the Banach algebra of all complex valued continuous functions defined on a compacet Hausdorff space X. Prove that there is a one-one correspondence between the non-empty closed subsets of X and closed ideals of C(X).
- **5** Do as directed: (Each question carries two marks)

14

- (a) Give reasons why $\mathbb{R} \{0\}$ is not a zeros set.
- (b) Give a continuous function $f : \mathbb{R} \to \mathbb{R}$ for which Z(f) is a countable infinite set.
- (c) Suppose $f \in C(X)$ and $A = \left\{ x \in X / f(x) > \frac{1}{2} \right\}$. Is A a zero set? Give reason.
- (d) Suppose f(x) = x for all x in \mathbb{R} Let 1 be the principal ideal generated by f(x). Give a function g in C(X) such that $g \in Z^{-1}(Z(1))$ but $g \notin I$.
- (e) Give the definition of a compactification of a space X and give characteristic property of the Stone–Cech compactification of X.
- (f) Give an example of a free maximal ideal in $C(\mathbb{N})$.
- (g) Give a continuous function $f: \mathbb{N} \to \mathbb{R}$ such that f cannot be extended to a continuous function $g: \beta(\mathbb{N}) \to \mathbb{R}$.